Temporal Profiling Establishes a Dynamic S-Palmitoylation Cycle
نویسندگان
چکیده
منابع مشابه
Chemical approaches for profiling dynamic palmitoylation.
Protein palmitoylation is a critical post-translational modification important for membrane compartmentalization, trafficking and regulation of many key signalling proteins. Recent non-radioactive chemo-proteomic labelling methods have enabled a new focus on this emerging regulatory modification. Palmitoylated proteins can now be profiled in complex biological systems by MS for direct annotatio...
متن کاملProtein S-palmitoylation in cellular differentiation
Reversible protein S-palmitoylation confers spatiotemporal control of protein function by modulating protein stability, trafficking and activity, as well as protein-protein and membrane-protein associations. Enabled by technological advances, global studies revealed S-palmitoylation to be an important and pervasive posttranslational modification in eukaryotes with the potential to coordinate di...
متن کاملThe intracellular dynamic of protein palmitoylation
S-palmitoylation describes the reversible attachment of fatty acids (predominantly palmitate) onto cysteine residues via a labile thioester bond. This posttranslational modification impacts protein functionality by regulating membrane interactions, intracellular sorting, stability, and membrane micropatterning. Several recent findings have provided a tantalizing insight into the regulation and ...
متن کاملProtein palmitoylation by a family of DHHC protein S-acyltransferases.
Protein palmitoylation refers to the posttranslational addition of a 16 carbon fatty acid to the side chain of cysteine, forming a thioester linkage. This acyl modification is readily reversible, providing a potential regulatory mechanism to mediate protein-membrane interactions and subcellular trafficking of proteins. The mechanism that underlies the transfer of palmitate or other long-chain f...
متن کاملProteomic profiling of S-acylated macrophage proteins identifies a role for palmitoylation in mitochondrial targeting of phospholipid scramblase 3.
S-Palmitoylation, the reversible post-translational acylation of specific cysteine residues with the fatty acid palmitate, promotes the membrane tethering and subcellular localization of proteins in several biological pathways. Although inhibiting palmitoylation holds promise as a means for manipulating protein targeting, advances in the field have been hampered by limited understanding of palm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Chemical Biology
سال: 2018
ISSN: 1554-8929,1554-8937
DOI: 10.1021/acschembio.8b00157